Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Mikołaja Kopernika

Pracownia układów programowalnych

Ćwiczenie 12

Opis i implementacja układu cyfrowego z wykorzystaniem Matlaba (System-Generator, Matlab, Virtex4, ML403)

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie studenta z narzędziem System-Generator oraz pokazanie możliwości wykorzystania Matlaba i Simulinka w opisie układów cyfrowych implementowanych w struktury FPGA. W trakcie tego ćwiczenia prosty projekt układu cyfrowego zostanie opisany w środowisku Matlab a następnie zaimplementowany do układu programowalnego [1]. Student ma możliwość sprawdzić działanie projektu wykorzystując symulację oraz obserwując działający układ.

Zagadnienia do przygotowania

Zakłada się, że przed przystąpieniem do ćwiczenia student posiada praktyczną umiejętność obsługi Matlaba oraz Simulinka. Wymagana jest znajomość reprezentacji liczb stałoprzecinkowych i całkowitych zarówno ze znakiem jak i bez znaku.

Przebieg ćwiczenia

- 1. Wykorzystując komponenty In oraz Out zaprojektować przy użyciu Simulinka układ przenoszący stan przycisku SW3 na stan diody LEDO ([2] schemat-1.png, [3]). Dokonać symulacji wykonanego układu na wejście reprezentujące przycisk podłączyć generator impulsów, na wyjście reprezentujące diodę podłączyć oscyloskop. Zaimplementować powyższy układ do struktury FPGA oraz sprawdzić jego działanie. Wybrać strukturę {Virtex4, xc4vfx12, -10, ff668}.
- 2. Wykonać układ, który będzie posiadał dwa 32 bitowe, dwukierunkowe (up/down) liczniki binarne z wejściem odblokowującym (en), zliczające impulsy zegara wzorcowego 100 MHz ([2] schemat-2.png, [3]). Oba liczniki (C0 i C1) powinny zostać, poprzez komponent relacyjny, podłączone do pary przycisków, z których pierwszy zwiększa stan licznika, a drugi ten stan zmniejsza. Wygodne jest następujące przypisanie SW3(C0++), SW4(C0--), SW5(C1++), SW7(C1--), SW6(RESET). Sześć najstarszych bitów każdego licznika powinno zostać, poprzez blok wycinający (Slice), podłączonych do trzech 6 wejściowych komponentów relacyjnych, które będą obrazować następujące stany C0==C1, C0>C1 oraz C1<C1. Do reprezentacji tych stanów wybrać diody LED0 (==), LED1 (>), LED2 (<).</p>
- 3. *(punkt obowiązkowy dla 60-cio godzinnych grup ćwiczeniowych)* Dokonać symulacji w środowisku Matlab układu z punktu 2.
- 4. (punkt obowiązkowy dla 60-cio godzinnych grup ćwiczeniowych) Zaimplementować dodatkowy 8 bitowy komponent relacyjny, którego zadaniem jest porównywać 8 najstarszych bitów obu liczników i raportować zgodność na diodzie LED3 (==) ([2] schemat-4.png, [3]).

Literatura

[1] ML403 Evaluation Platform User Guide - nota producenta. Xilinx. 2004. (ML403ug.pdf).

[2] Schematy blokowe dla poszczególnych punktów ćwiczenia (schemat-1.png, schemat-2.png, schemat-4.png).

[3] Obrazy ważniejszych okien aplikacji (system_generator.png, gateway_in-1.png, gateway_in-2.png, counter.png).

UWAGA, wszystkie pozycje literaturowe dostępne są w postaci elektronicznej (plik PDF oraz pliki PNG).